Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation.

نویسندگان

  • Q Wang
  • Y H Song
  • Z Tang
  • Z P Wang
  • Q Xu
  • N Bao
چکیده

Neurogenesis, recovery from nerve injury, neurodegeneration, and Parkinson's disease affect people's health, yet the underlying molecular mechanisms remain elusive. Here, we investigated the effect of ganglioside GM1 and neural growth factor (NGF) on neural stem cell (NSC) proliferation and differentiation in vitro to provide a scientific basis for comprehensive treatment of nervous system diseases via NSC application. As widely applied methods of relatively high accuracy, cell counts and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays were used to assess NSC proliferation. In addition, western blotting was employed to determine NSC differentiation. Cell counts and MTT assays demonstrated that in epidermal growth factor (EGF)- and basic fibroblast growth factor (bFGF)-containing medium, a high concentration of GM1, but not NGF, significantly elevated NSC proliferation. In NSC cultures lacking EGF and bFGF, cell counts and MTT values were significantly increased compared to those in the negative control group on days 4, 7, and 10 after GM1 (25, 100, and 200 ng/mL) but not NGF (25, 50, 100, and 200 ng/mL) treatment. Western blotting revealed significantly increased expression of nestin (an NSC marker) in NSCs treated with GM1, and upregulation of glial fibrillary acidic protein (a glial cell marker) and neuron-specific enolase (a neuron marker) in those administered NGF. Our results suggest that GM1 and NGF induce NSC proliferation and differentiation, respectively, in a dose-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem ...

متن کامل

Monosialoganglioside 1 may alleviate neurotoxicity induced by propofol combined with remifentanil in neural stem cells

Monosialoganglioside 1 (GM1) is the main ganglioside subtype and has neuroprotective properties in the central nervous system. In this study, we aimed to determine whether GM1 alleviates neurotoxicity induced by moderate and high concentrations of propofol combined with remifentanil in the immature central nervous system. Hippocampal neural stem cells were isolated from newborn Sprague-Dawley r...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2016